Abstract

The Escherichia coli/bacteriophage λ genetic interaction system has been used to uncover the existence of various biological machines. The starting point of all these studies was the isolation and characterization of E. coli mutants that blocked λ growth, and the corresponding λ compensatory mutations. In this manner, the λN-promoted transcriptional anti-termination machine was discovered composed of the NusA/NusB/NusE/NusG host proteins. In addition, the DnaK and GroEL chaperone machines were discovered composed of DnaK/DnaJ/GrpE and GroES/GroEL heat shock proteins. The individual members of the DnaK and GroEL chaperone machines have been conserved throughout evolution in both function and structure. Their biological roles include a direct involvement in λ DNA replication and morphogenesis, the protection of proteins from aggregation, the disaggregation of various protein aggregates, the manipulation of protein structure and function, as well as the autoregulation of the heat shock response. The evolution of λ to extensively rely on the status of the heat shock response of E. coli is likely linked to its lytic versus lysogenic choice of lifestyle. The bacteriophage T4 gp31 protein has been purified and shown to substitute for many of GroES' co-chaperonin activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.