Abstract

Bacteriophage Mu does not grow on temperature-sensitive E. coli dnaK mutants at elevated temperatures because of a defect in late transcription. As the Mu-encoded C protein is required for activation of transcription from the phage late promoters, we attempted to determine if DnaK and its accessory proteins DnaJ and GrpE are required for synthesis of C protein or at a later step. We found that the chaperones act in Mu late transcription beyond C-protein synthesis, and that C-protein stability is decreased in the mutant hosts. This suggests that the DnaK chaperone machine may be required for the proper folding and/or multimerization of C protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call