Abstract
Let $k$ be a non-negative integer and $q > 1$ be a positive integer. Let $s_q(k)$ be the sum of digits of $k$ written in base $q.$ In 1940, Bush proved that $A_q(x)=\sum_{k \leq x} s_q (k)$ is asymptotic to $\frac{q-1}{2}x \log_q x.$ In 1968, Trollope proved an explicit formula for the error term of $A_2(n-1),$ labeled by $-E_2(n),$ where $n$ is a positive integer. In 1975, Delange extended Trollope's result to an arbitrary base $q$ by another method and labeled the error term $nF_q(\log_q n).$ When $q=2,$ the two formulas of the error term are supposed to be equal, but they look quite different. We proved directly that those two formulas are equal. More interestingly, Cooper and Kennedy in 1999 applied Trollope's method to extend $-E_2(n)$ to $-E_q(n)$ with a general base $q,$ and we also proved directly that $nF_q(\log_q n)$ and $-E_q(n)$ are equal for any $q.$
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.