Abstract
The stability of cohesive sediments from Venice lagoon has been measured in situ using the benthic flume Sea Carousel. Twenty four stations were occupied during summertime, and a sub-set of 13 stations was re-occupied during the following winter. Erosion thresholds and first-order erosion rates were estimated and showed a distinct difference between inter-tidal and sub-tidal stations. The higher values for inter-tidal stations are the result of exposure that influences consolidation, density, and organic adhesion. The thresholds for each state of sediment motion are well established. However, the rate of erosion once the erosion threshold has been exceeded has been poorly treated. This is because normally a time-series of sediment concentration ( C) and bed shear stress ( τ 0( t)) is used to define threshold stress or cohesion ( τ crit,z ) and erosion rate ( E). Whilst solution of the onset of erosion, τ crit ,0, is often reported, the evaluation of the erosion threshold variation through the process of erosion (eroded depth) is usually omitted or not estimated. This usually leads to assumptions on the strength profile of the bed which invariably has no credibility within the topmost mm of the bed where most erosion takes place. It is possible to extract this information from a time-series through the addition of a step in data processing. This paper describes how this is done, and the impact of this on the accuracy of estimates of the excess stress ( τ 0( t)– τ crit,z ) on E.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.