Abstract

The E-region Rocket/Radar Instability Study (Project ERRRIS) investigated in detail the plasma instabilities in the low altitude ( E-region) auroral ionosphere and the sources of free energy that drive these waves. Three independent sets of experiments were launched on NASA sounding rockets from Esrange, Sweden, in 1988 and 1989, attaining apogees of 124, 129 and 176km. The lower apogee rockets were flown into the unstable auroral electrojet and encountered intense two-stream waves driven by d.c. electric fields that ranged from 35 to 115 mV/m. The higher apogee rocket returned fields and particle data from an active auroral arc, yet observed a remarkably quiescent electrojet region as the weak d.c. electric fields (~ 10–15 mV/m) there were below the threshold required to excite two-stream waves. The rocket instrumentation included electric field instruments (d.c. and wave), plasma density fluctuation ( δn/ n) receivers, d.c. fluxgate magnetometers, energetic particle detectors (ions and electrons), ion drift meters, and swept Langmuir probes to determine absolute plasma density and temperature. The wave experiments included spatially separated sensors to provide wave vector and phase velocity information. All three rockets were flown in conjunction with radar backscatter measurements taken by the 50MHz CUPRI system, which was the primary tool used to determine the launch conditions. Two of the rockets were flown in conjunction with plasma drift, density, and temperature measurements taken by the EISCAT incoherent scattar radar. The STARE radar also made measurements during this campaign. This paper describes the scientific objectives of these rocket/radar experiments, provides a summary of the geophysical conditions during each launch, and gives an overview of the principal rocket and radar observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call