Abstract
We study the Erdös–Falconer distance problem in vector spaces over finite fields with respect to the cubic metric. Estimates for discrete Airy sums and Adolphson–Sperber estimates for exponential sums in terms of Newton polyhedra play a crucial role. Similar techniques are used to study the incidence problem between points and cubic and quadratic curves. As a result we obtain a nontrivial range of exponents that appear to be difficult to attain using combinatorial methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.