Abstract

Let [Formula: see text] be a commutative semigroup endowed with a binary associative operation [Formula: see text]. An element [Formula: see text] of [Formula: see text] is said to be idempotent if [Formula: see text]. The Erdős–Burgess constant of [Formula: see text] is defined as the smallest [Formula: see text] such that any sequence [Formula: see text] of terms from [Formula: see text] and of length [Formula: see text] contains a nonempty subsequence, the sum of whose terms is idempotent. Let [Formula: see text] be a prime power, and let [Formula: see text] be the polynomial ring over the finite field [Formula: see text]. Let [Formula: see text] be a quotient ring of [Formula: see text] modulo any ideal [Formula: see text]. We gave a sharp lower bound of the Erdős–Burgess constant of the multiplicative semigroup of the ring [Formula: see text], in particular, we determined the Erdős–Burgess constant in the case when [Formula: see text] is the power of a prime ideal or a product of pairwise distinct prime ideals in [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.