Abstract

Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.