Abstract

To reveal the engineering relationship among the electrical properties of embroidered conductive lines, the electrical properties and arrangements of conductive yarns, it is necessary to establish their equivalent resistance model. Embroidered conductive lines in textiles are usually fabricated by single-layer (conductive and nonconductive yarn used as upper and lower yarn) or double-layer embroidery technology (conductive yarns used as upper and lower yarn). Several researchers have proposed the simple resistance model for single-layer embroidered conductive line based on geometric structure of single conductive yarn in fabric. However, the double-layer conductive line has the contact resistance periodically interlaced by the upper and lower conductive yarns, and it made its equivalent circuit different from that of single-layer conductive line. In this work, a geometric model was built to describe the trace of conductive yarn in fabric, and in combination with Wheatstone Bridge theory, was applied to establish the equivalent resistance models of double-layer conductive lines with a certain width, consisted of various courses. First, the equivalent resistance model of double-layer conductive lines consisting of single course was proposed to calculate the contact resistance. Then, to obtain the electrical resistance of double-layer conductive lines with a certain width, the equivalent resistance model was extended from single course to multiple courses ([Formula: see text]). Finally, to validate the proposed equivalent resistance model, double-layer conductive lines with different embroidery parameters (stitch length and stitch spacing) on nonwoven fabric were fabricated and evaluated. The experimental results revealed that the proposed model accurately predicted the resistances of double-layer conductive lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call