Abstract
We present the Equivalent Power Storm (EPS) model as a generalization of the Equivalent Triangular Storm (ETS) model of Boccotti for the long-term statistics of extreme wave events. In the EPS model, each actual storm is modeled in time t by a power law ∼|t−t0|λ, where λ is a shape parameter and t0 is the time when the storm peak occurs. We then derive the general expression of the return period R(Hs > h) of a sea storm in which the maximum significant wave height Hs exceeds a fixed threshold h as function of λ. Further, given the largest wave height Hmax, we identify the most probable storm in which the largest wave occurs and derive an explicit expression for the return period R(Hmax >H) of a storm in which the maximum wave height exceeds a given threshold H. Finally, we analyze wave measurements retrieved from two of the NOAA-NODC buoys in the Atlantic and Pacific oceans and find that the EPS predictions are in good agreement with those from the ETS model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.