Abstract
A prestack time migration is presented that is simple, efficient, and provides detailed velocity information. It is based on Kirchhoff prestack time migration and can be applied to both 2-D and 3-D data. The method is divided into two steps: the first is a gathering process that forms common scatterpoint (CSP) gathers; the second is a focusing process that applies a simplified Kirchhoff migration on the CSP gathers, and consists of scaling, filtering, normal moveout (NMO) correction, and stacking. A key concept of the method is a reformulation of the double square‐root equation (of source‐scatterpoint‐receiver traveltimes) into a single square root. The single square root uses an equivalent offset that is the surface distance from the scatterpoint to a colocated source and receiver. Input samples are mapped into offset bins of a CSP gather, without time shifting, to an offset defined by the equivalent offset. The single square‐root reformulation gathers scattered energy to hyperbolic paths on the appropriate CSP gathers. A CSP gather is similar to a common midpoint (CMP) gather as both are focused by NMO and stacking. However, the CSP stack is a complete Kirchhoff prestack migrated section, whereas the CMP stack still requires poststack migration. In addition, the CSP gather has higher fold in the offset bins and a much larger offset range due to the gathering of all input traces within the migration aperture. The new method gains computational efficiency by delaying the Kirchhoff computations until after the CSP gather has been formed. The high fold and large offsets of the CSP gather enables precise focusing of the velocity semblance and accurate velocity analysis. Our algorithm is formulated in the space‐time domain, which enables prestack migration velocity analysis to be performed at selected locations and permits prestack migration of a 3-D volume into an arbitrarily located 2-D line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.