Abstract

We deal with the point-interaction approximations for the acoustic wave fields generated by a cluster of highly contrasted bubbles for a wide range of densities and bulk moduli contrasts. We derive the equivalent fields when the cluster of bubbles is appropriately distributed (but not necessarily periodically) in a bounded domain $\Omega$ of $\mathbb{R}^3$. We handle two situations. 1. In the first one, we distribute the bubbles to occupy a $3$ dimensional domain. For this case, we show that the equivalent speed of propagation changes sign when the medium is excited with frequencies smaller or larger than (but not necessarily close to) the Minnaert resonance. As a consequence, this medium behaves as a reflective or absorbing depending on whether the used frequency is smaller or larger than this resonance. In addition, if the used frequency is extremely close to this resonance, for a cluster of bubbles with density above a certain threshold, then the medium behaves as a 'wall', i.e. allowing no incident sound to penetrate. 2. In the second one, we distribute the bubbles to occupy a $2$ dimensional (open or closed) surface, not necessarily flat. For this case, we show that the equivalent medium is modeled by a Dirac potential supported on that surface. The sign of the surface potential changes for frequencies smaller or larger than the Minnaert resonance, i.e. it behaves as a smart metasurface reducing or amplifying the transmitted sound across it. As in the $3$D case, if the used frequency is extremely close to this resonance, for a cluster of bubbles with density above an appropriate threshold, then the surface allows no incident sound to be transmitted across the surface, i.e. it behaves as a white screen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.