Abstract

The equivalence postulate of quantum mechanics offers an axiomatic approach to quantum field theories and quantum gravity. The equivalence hypothesis can be viewed as adaptation of the classical Hamilton-Jacobi formalism to quantum mechanics. The construction reveals two key identities that underlie the formalism in Euclidean or Minkowski spaces. The first is a cocycle condition, which is invariant underD-dimensional Möbius transformations with Euclidean or Minkowski metrics. The second is a quadratic identity which is a representation of theD-dimensional quantum Hamilton-Jacobi equation. In this approach, the solutions of the associated Schrödinger equation are used to solve the nonlinear quantum Hamilton-Jacobi equation. A basic property of the construction is that the two solutions of the corresponding Schrödinger equation must be retained. The quantum potential, which arises in the formalism, can be interpreted as a curvature term. The author proposes that the quantum potential, which is always nontrivial and is an intrinsic energy term characterising a particle, can be interpreted as dark energy. Numerical estimates of its magnitude show that it is extremely suppressed. In the multiparticle case the quantum potential, as well as the mass, is cumulative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.