Abstract
Homotopy type theory is a new branch of mathematics that merges insights from abstract homotopy theory and higher category theory with those of logic and type theory. It allows us to represent a variety of mathematical objects as basic type-theoretic construction, higher inductive types. We present a proof that in homotopy type theory, the torus is equivalent to the product of two circles. This result indicates that the synthetic definition of torus as a higher inductive type is indeed correct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.