Abstract

This article depicts a location game in a circular market. The equivalence results between a convex and a concave transport cost are reexamined by assuming an arbitrary length. In contrast to previous research the solution found shows that the equivalence relationship depends on the space length. Furthermore, the analysis is extended to a circular model with unitary length and zoning. In this case equivalence does not hold. Moreover, non-existence of equilibrium is shown under strictly linear quadratic functions. Surprisingly, equilibrium exists for a concave quadratic function but not for a convex quadratic function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.