Abstract

It is shown analytically that the method of planes (MOP) [Todd, Evans, and Daivis, Phys. Rev. E 52, 1627 (1995)] and volume averaging (VA) [Cormier, Rickman, and Delph, J. Appl. Phys. 89, 99 (2001)] formulas for the local pressure tensor, P(α, y)(y), where α ≡ x, y, or z, are mathematically identical. In the case of VA, the sampling volume is taken to be an infinitely thin parallelepiped, with an infinite lateral extent. This limit is shown to yield the MOP expression. The treatment is extended to include the condition of mechanical equilibrium resulting from an imposed force field. This analytical development is followed by numerical simulations. The equivalence of these two methods is demonstrated in the context of non-equilibrium molecular dynamics (NEMD) simulations of boundary-driven shear flow. A wall of tethered atoms is constrained to impose a normal load and a velocity profile on the entrained central layer. The VA formula can be used to compute all components of P(αβ)(y), which offers an advantage in calculating, for example, P(xx)(y) for nano-scale pressure-driven flows in the x-direction, where deviations from the classical Poiseuille flow solution can occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call