Abstract

Metabolic disease is a significant problem that causes a range of species-specific comorbidities. Recently, a better understanding of glucose-dependent insulinotropic polypeptide (GIP) biology has led to the suggestion that inhibiting its action may attenuate obesity in several species. In horses, antagonism of GIP may also reduce hyperinsulinemia, which leads to insulin-associated laminitis, a painful comorbidity unique to this species. However, little is known about GIP in horses. The aims of this study were to examine the tissue distribution of equine GIP receptors (eGIPR), to determine whether eGIPR can be blocked using a GIP antagonist not tested previously in horses, and to establish whether there is any association between GIP concentrations and body mass in this species. Archived tissues from healthy horses were used to establish that eGIPR gene expression was strong in pancreas, heart, liver, kidney, and duodenum and absent in gluteal muscle. Pancreatic islets were isolated from fresh horse pancreas using collagenase digestion and layering through a density gradient. Islet viability was confirmed microscopically and by demonstrating that insulin production was stimulated by glucose in a concentration-dependent manner. Insulin release was also shown to be concentration-dependent with GIP up to 0.1µM, and the response to GIP was decreased ( = 0.037) by the antagonist (Pro3)GIP. As for the relationship between body mass and GIP in vivo postprandial GIP concentrations in archived plasma samples were positively correlated with body condition and cresty neck scores ( < 0.05). Thus, the eGIPR is a potential therapeutic target for insulin dysregulation and obesity in horses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.