Abstract

BackgroundObesity is an important equine welfare issue. Whilst dietary restriction is the most effective weight-loss tool, individual animals range in their weight-loss propensity. Gastrointestinal-derived bacteria play a fundamental role in host-health and have been associated with obesity and weight-loss in other species. This study evaluated the faecal microbiome (next-generation sequencing of 16S rRNA genes) of 15 obese Welsh Mountain pony mares, in the same 11-week period across 2 years (n = 8 Year 1; n = 7 Year 2). Following a 4-week acclimation period (pre-diet phase) during which time individuals were fed the same hay to maintenance (2% body mass (BM) as daily dry matter (DM) intake), animals underwent a 7-week period of dietary restriction (1% BM hay as daily DM intake). Faeces were sampled on the final 3 days of the pre-diet phase and the final 3 days of the dietary restriction phase. Bacterial communities were determined using Next Generation Sequencing of amplified V1-V2 hypervariable regions of bacterial 16S rRNA.ResultsLosses in body mass ranged from 7.11 to 11.59%. Changes in the faecal microbiome composition following weight-loss included a reduction in the relative abundance of Firmicutes and Tenericutes and a reduction in indices of bacterial diversity. Pre-diet diversity was negatively associated with weight-loss. Pre-diet faecal acetate concentration was a strong predictor of subsequent weight-loss and negatively associated with Sphaerochaeta (Spirochaetes phylum) abundance. When animals were divided into 3 groups (high, mid, low) based overall weight loss, pre-diet bacterial community structure was found to have the greatest divergence between the high and low weight-loss groups (R = 0.67, p < 0.01), following PERMANOVA and ANOSIM analysis.ConclusionsWeight-loss in this group of ponies was associated with lower pre-diet faecal bacterial diversity and greater pre-diet acetate concentration. Overall, these data support a role for the faecal microbiome in weight-loss propensity in ponies and provide a baseline for research evaluating elements of the faecal microbiome in predicting weight-loss success in larger cohorts.

Highlights

  • Obesity is an important equine welfare issue

  • Changes in body mass and body composition All animals remained healthy throughout the study

  • One possible explanation for the lower weight-loss observed in animals with lower pre-diet faecal acetate concentrations could be that these animals are more metabolically efficient and have a greater production/absorption of volatile fatty acids (VFA) into the circulation, inhibiting lipolysis and providing the host with a source of energy to limit the effects of the negative energy balance. In support of this hypothesis, analysis of genera that differed in abundance between pre-diet acetate concentrations in the current study revealed that pre-diet abundance of Sphaerochaeta and Treponema were significantly greater in animals with the lowest faecal acetate concentration

Read more

Summary

Introduction

Obesity is an important equine welfare issue. Whilst dietary restriction is the most effective weight-loss tool, individual animals range in their weight-loss propensity. Gastrointestinal-derived bacteria play a fundamental role in host-health and have been associated with obesity and weight-loss in other species. Following a 4-week acclimation period (pre-diet phase) during which time individuals were fed the same hay to maintenance (2% body mass (BM) as daily dry matter (DM) intake), animals underwent a 7-week period of dietary restriction (1% BM hay as daily DM intake). Bacteria residing in the gastrointestinal tract of all species play a fundamental role in host health and whole-body metabolism, whereby disruptions to energy balance, such as observed in obesity and associated metabolic diseases, are associated with dysbiosis of the gut microbiota [1,2,3,4]. As for humans, not all horses and ponies will lose weight at the same rate when placed on an energy restricted diet (1.25% body mass (BM) as dry matter (DM) daily), and some will require further restriction to 1.0% BM as DM daily to elicit expected reductions in BM [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call