Abstract

A total of six high-resolution FT-IR spectra for trans-glyoxal-d2, trans-glyoxal-d1 and trans-glyoxal-13C2 were recorded with a resolution ranging from 0.003 to 0.004 cm−1. By means of a simultaneous ground state combination difference analysis for each of these isotopologues using the Watson Hamiltonian in A-reduction and Ir-representation the ground state rotational constants are obtained. An empirical equilibrium structure is determined for trans-glyoxal using these experimental ground state rotational constants and vibration–rotation interaction constants calculated at the CCSD(T)/cc-pVTZ level of theory. The least-squares fit yields the following structural parameters for trans-glyoxal: re(C–C) = 1.51453(38) Å, re(C–H) = 1.10071(26) Å, re(CO) = 1.20450(27) Å, αe(CCH) = 115.251(24)°, and αe(HCO) = 123.472(19)° in excellent agreement with theoretical predictions at the CCSD(T)/cc-pVQZ level of theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.