Abstract

The equilibrium geometry, barrier to planarity, and harmonic vibrational frequencies were determined theoretically for the ground state of the ethylene radical cation using several quantum mechanical methods and basis sets. The minimum-energy structure is a nonplanar D2 conformer separated from its symmetry equivalent by a planar transition state. The CCSD(T)/cc-pVTZ level of theory obtained an equilibrium C−C bond length and torsion angle of 1.4004 A and 21.0°, respectively, which are 0.005 A and 4.0° less than the experimentally derived values of Koppel et al. [J. Chem. Phys. 1978, 69, 4252]. The documented reliability of CCSD(T)/cc-pVTZ equilibrium geometries might call into question the experimentally derived geometry. In addition, the barrier to planarity was determined using a series of basis sets and methods aimed at reaching the complete-basis-set limit. The final vibrationless barrier was determined to be 116 ± 35 cm-1. Also, to aid in the interpretation of a recent infrared cavity-ring-down expe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.