Abstract
This study examines the contribution of ocean dynamics to sea surface temperature (SST) biases in the eastern Pacific cold tongue region in fifteen coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Twenty years (1980–1999) of the twentieth‐century (20C3m) climate simulations from each model are analyzed. An excessive and narrow SST cold tongue that extends too far west into the western Pacific in comparison to observations is a common bias in CGCMs. This feature is found in CGCMs analyzed here and in many previous studies. The heat budget analysis indicates that errors in both net surface heat flux and total upper ocean heat advection significantly contribute to the excessive cold tongue in the equatorial Pacific. The stronger heat advection in the models is caused by overly strong horizontal heat advection associated with too strong zonal currents, and overly strong vertical heat advection due to excessive upwelling and the vertical gradient of temperature. The Bjerknes feedback in the coupled models is shown to be weaker than in observations, which may be related to the insufficient response of surface zonal winds to SST in the models and an erroneous subsurface temperature structure. A hypothesis that describes how the cold tongue bias is possibly developed in the CGCMs is provided based on the results of our analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.