Abstract

The volume of lawsonite, CaAl 2 Si 2 O 7 (OH) 2 · H 2 O, has been measured up to 7 GPa and 873 K using in situ energy dispersive powder diffraction and a multi-anvil high pressure-temperature cell at the Synchrotron Radiation Source, Daresbury Laboratory, U.K. Measurements were made on isotherms at 298, 323, 373, 473, 573, 673, 773, and 873 K within the pressure range. Sample pressure was measured from a NaCl standard mixed with the sample; the unit-cell volume of lawsonite was taken from the same diffraction pattern. The data gave an ambient temperature isothermal bulk modulus of K 298 112 ± 6 GPa, similar to previous values. This value overestimates the temperature stability of lawsonite in thermodynamic calculations. A fit of the Birch-Murnaghan equation of state to the whole high pressure and temperature data set gave an isothermal bulk modulus of K 298 = 125 ±5 GPa and a dK/dT of -0.01 ± 0.01/K, with K 1 set to a value of 4 and the expansivity set to 3.16 × 10 -5 /K. Using these values to calculate the pressure-temperature positions of three of lawsonite’s dehydration reactions improved the agreement between observed and calculated positions of the lawsonite dehydration reactions to within experimental and calculation error. This work shows that the ambient temperature bulk modulus and ambient pressure expansivity do not adequately describe the volume behavior of lawsonite at combined high pressure and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.