Abstract

This paper presents a theoretical model for describing the thermodynamic properties of doped ferroelectric crystals based on a modified Weiss mean-field approach. Accounting for quadrupole and octupole terms in the expression for the effective field within the Weiss model makes it possible to move from the Langevin equation to the Landau–Ginzburg equation. Furthermore, the coefficients of the Landau–Ginzburg equation can be expressed in terms of the physical parameters of the crystal lattice. For these parameters, analytical expressions are proposed that describe their change when adding dopants in ceramic matrix composites. Perovskite barium titanate ceramics with a variety of inclusions is considered as an application example of the developed method. The obtained agreement between the analytical and experimental results for barium titanate ceramics with lanthanum/magnesium/zirconium dopants gives us hope of the applicability of the present theory to the calculation of other doped ferroelectrics as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.