Abstract
We present theory and algorithms for the equality constrained indefinite least squares problem, which requires minimization of an indefinite quadratic form subject to a linear equality constraint. A generalized hyperbolic QR factorization is introduced and used in the derivation of perturbation bounds and to construct a numerical method. An alternative method is obtained by employing a generalized QR factorization in combination with a Cholesky factorization. Rounding error analysis is given to show that both methods have satisfactory numerical stability properties and numerical experiments are given for illustration. This work builds on recent work on the unconstrained indefinite least squares problem by Chandrasekaran, Gu, and Sayed and by the present authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.