Abstract
The transition of Epstein-Barr virus (EBV) from latency into the lytic cycle is associated with the expression of two immediate-early viral genes, BZLF1 and BRLF1. Overexpression of ZEBRA, the product of BZLF1, is sufficient to disrupt latency in B lymphocytes and epithelial cells by stimulating expression of lytic cycle genes, including BRLF1. The BRLF1 product Rta functions as a transcriptional activator in both B lymphocytes and epithelial cells. However, Rta has recently been reported to disrupt latency in an epithelial specific manner (S. Zalani, E. Holley-Guthrie, and S. Kenney, Proc. Natl. Acad. Sci. USA 93:9194-9199, 1996). Here we demonstrate that expression of Rta is also sufficient for disruption of latency in a permissive B-cell line. In HH514-16 cells, transfection of Rta leads to synthesis of ZEBRA, viral DNA replication, and late gene expression. However, Rta by itself is less potent than ZEBRA in the ability to activate most early and late lytic cycle genes. In light of previous work implicating ZEBRA in the activation of Rta, we suggest a cooperative model for EBV entry into the lytic cycle. Expression of either BZLF1 or BRLF1 triggers expression of the other immediate-early factor, and together these activators act individually or in synergy on downstream targets to activate the viral lytic cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.