Abstract
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 is a transcriptional activator that mediates the switch between the latent and the lytic forms of EBV infection. It was previously reported that BZLF1 inhibits p53 transcriptional function in reporter gene assays. Here we further examined the effects of BZLF1 on p53 function by using a BZLF1-expressing adenovirus vector (AdBZLF1). Infection of cells with the AdBZLF1 vector increased the level of cellular p53 but prevented the induction of p53-dependent cellular target genes, such as p21 and MDM2. BZLF1-expressing cells had increased p53-specific DNA binding activity in electrophoretic mobility shift assays, increased p53 phosphorylation at multiple residues (including serines 6, 9, 15, 33, 46, 315, and 392), and increased acetylation at lysine 320 and lysine 382. Thus, the inhibitory effects of BZLF1 on p53 transcriptional function cannot be explained by its effects on p53 phosphorylation, acetylation, or DNA binding activity. BZLF1 substantially reduced the level of cellular TATA binding protein (TBP) in both normal human fibroblasts and A549 cells, and the inhibitory effects of BZLF1 on p53 transcriptional function could be partially rescued by the overexpression of TBP. Thus, BZLF1 has numerous effects on p53 posttranslational modification but may inhibit p53 transcriptional function in part through an indirect mechanism involving the suppression of TBP expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.