Abstract

Epigenetic mechanisms are thought to help regulate the unique transcription program that is established in germ cell development. During the germline cycle of many organisms, the epigenome undergoes waves of extensive resetting events, while a part of epigenetic modification remains faithful to specific loci. Little is known about the mechanisms underlying these events, how loci are selected for, or avoid, reprogramming, or even why these events are required. In particular, although the significance of genomic imprinting phenomena involving DNA methylation in mammals is now well accepted, the role of histone modification as a transgenerational epigenetic mechanism has been the subject of debate. Such epigenetic mechanisms may help regulate transcription programs and/or the pluripotent status conferred on germ cells, and contribute to germ line continuity across generations. Recent studies provide new evidence for heritability of histone modifications through germ line cells and its potential effects on transcription regulation both in the soma and germ line of subsequent generations. Unraveling transgenerational epigenetic mechanisms involving highly conserved histone modifications in elegant model systems will accelerate the generation of new paradigms and inspire research in a wide variety of fields, including basic developmental studies and clinical stem cell research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.