Abstract

A growing body of evidence suggests that epigenetic modifications-changes to the genome that do not involve changes in DNA sequence-may significantly derail transcriptional programs implicated in angiogenesis, oxidative stress and inflammation, thus fostering cardiovascular damage in patients with diabetes. Notably, adverse epigenetic signals acquired over the life course can be transmitted to the offspring, and may contribute to early cardiovascular phenotypes in the young generations. Hyperglycaemia and insulin resistance-key hallmarks of diabetes-induce an array of epigenetic modifications (i.e., DNA methylation, histone marks, and non-coding RNAs) which are responsible for a long-lasting impairment of vascular and cardiac function, even after intensive glycemic control. Hence, unveiling the "epigenetic landscape" in patients with diabetes may provide a post-genomic snapshot of global cardiovascular risk, and may furnish the tools to design personalized, epigenetic-based therapies to alleviate the burden of cardiovascular disease in diabetic patients. The present review aims to acquaint the scientific community with the rapidly advancing field of epigenetics and its implications in the cardiovascular complications of diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.