Abstract

ObjectivesThe epidermal growth factor receptor variant type III (EGFRvIII) is the most common mutation of EGFR in glioblastoma multiforme (GBM) and is found in approximately 25% of all GBMs. Intriguingly, EGFRvIII is mostly found in GFAP+ astrocytic tumour cells in the brain, suggesting connection of EGFRvIII to astrogenesis. In this study, we explored whether EGFRvIII mutation facilitates astrogenesis in human development setting.Materials and methodsUsing CRISPR‐Cas9, we generated EGFRvIII mutations in H9‐hESCs. Wild type (wt) H9‐hESCs were used as an isogenic control. Next, we generated cerebral organoids using the wt and EGFRvIII‐hESCs and examined the astrogenic differentiation of the brain organoids.Results EGFRvIII‐organoids showed abundant astrocytes (GFAP+, S100β+), while no astrocytes were detected in wt hESC‐derived organoids at day 49. On the contrary, TUJ1+ neurons were more abundant in the wt‐organoids than the EGFRvIII‐organoids. This result suggested that constitutively active EGFRvIII promoted astrogenesis at the expense of neurogenesis. In addition, the EGFRvIII‐organoids were larger in size and retained more Ki67+ cells than wt‐organoids, indicating enhanced cell proliferation by the mutation. The EGFRvIII‐organoids displayed massive apoptotic cell death after treatment with temozolomide and hence, could be used for evaluation of anti‐GBM drugs.Conclusions EGFRvIII mutation‐induced astrogenesis and massive cell proliferation in a human brain development model. These results provide us new insights into the mechanisms relating EGFRvIII mutation‐mediated gliogenesis and gliomagenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call