Abstract

BackgroundDespite recent advances through the development pipeline, how novel tuberculosis (TB) vaccines might affect rifampicin-resistant and multidrug-resistant tuberculosis (RR/MDR-TB) is unknown. We investigated the epidemiologic impact, cost-effectiveness, and budget impact of hypothetical novel prophylactic prevention of disease TB vaccines on RR/MDR-TB in China and India.MethodsWe constructed a deterministic, compartmental, age-, drug-resistance- and treatment history-stratified dynamic transmission model of tuberculosis. We introduced novel vaccines from 2027, with post- (PSI) or both pre- and post-infection (P&PI) efficacy, conferring 10 years of protection, with 50% efficacy. We measured vaccine cost-effectiveness over 2027–2050 as USD/DALY averted-against 1-times GDP/capita, and two healthcare opportunity cost-based (HCOC), thresholds. We carried out scenario analyses.ResultsBy 2050, the P&PI vaccine reduced RR/MDR-TB incidence rate by 73% (UI:66–76) and 72% (UI:65–77), and the PSI vaccine by 29% (UI: 27–31) and 47% (UI: 37–58) in China and India, respectively.In India, we found both USD 10 P&PI and PSI vaccines cost-effective at the 1-times GDP and upper HCOC thresholds and P&PI vaccines cost-effective at the lower HCOC threshold. In China, both vaccines were cost-effective at the 1-times GDP threshold. P&PI vaccine remained cost-effective at the lower HCOC threshold with 49% probability and PSI vaccines at the upper HCOC threshold with 21% probability. The P&PI vaccine was predicted to avert 1.0 million (UI: 0.6–1.3) and 0.8 million (UI: 0.5–1.4) second-line therapy regimens in China and India between 2027 and 2050, respectively.ConclusionsNovel TB vaccination is likely to substantially reduce the future burden of RR/MDR-TB, while averting the need for second-line therapy. Vaccination may be cost-effective depending on vaccine characteristics and setting.

Highlights

  • Despite recent advances through the development pipeline, how novel tuberculosis (TB) vaccines might affect rifampicin-resistant and multidrug-resistant tuberculosis (RR/MDR-TB) is unknown

  • We report the proportion of incremental cost-effectiveness ratios (ICERs) which fall below three illustrative thresholds per country: 1-times 2018 World Bank gross domestic product (GDP) per capita and the lowest and highest healthcare opportunity cost (HCOC) thresholds estimated by Ochalek et al [101]

  • Epidemiologic impact A summary of the epidemiologic impact of both preand post-infection (P&PI) and PSI vaccines is presented in Figs. 2 and 3 and Tables 1 and 2

Read more

Summary

Introduction

Despite recent advances through the development pipeline, how novel tuberculosis (TB) vaccines might affect rifampicin-resistant and multidrug-resistant tuberculosis (RR/MDR-TB) is unknown. Rifampicin-resistant and multidrug-resistant tuberculosis (RR/MDR-TB) threatens to impede global tuberculosis (TB) control efforts and progress towards the World Health Organization End TB targets [1], with approximately half a million incident cases in 2018 [2]. Results from the M72/AS01E [6] and BCG revaccination [7] trials suggest possible vaccine efficacy of 50% and 46% in Interferon-γ release assay (IFNy) + and IFNynegative patients, respectively. These trials did not include RR/MDR-TB endpoints due to its relative rarity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call