Abstract

The Eole Experiment with 480 constant level balloons released in the Southern Hemisphere is described. Each balloon, floating freely at approximately the 200-mb level, is a precise tracer of the horizontal motion of air masses, the accuracy of which is limited only by the laminated structure of the stratospheric flow, within an rms uncertainty of 1.5 m sec−1. The balloons were found after 2 months to distribute at random over the whole hemisphere outside the tropics, irrespective of their original launching site. Early results of Eulerian and Lagrangian averages of the Eole wind data are given for describing the mean 200-mb zonal and meridional circulations. The effect of the small scale eddies of two-dimensional turbulence has been studied with respect to the relative eddy diffusion of pairs of balloons and the relative dispersion of triangular clusters. New estimates of the rms divergence of the 200-mb flow are given, together with their scale dependence which was found to be a logarithmic law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call