Abstract

ABSTRACT According to the prevailing view in literature, two Eocene carbonate platform belts developed on northern and southern margins of the Tethys Ocean. However, Eocene platforms in the Malaguide−Ghomaride Units (Betic-Rifian Arc; Spain and Morocco, respectively) in intermediate position to the classic platform belts have been proposed in recent literature. A number of representative Ypresian to Priabonian stratigraphic sections have been revisited and empowered by new data collected for the scope. Ten lithobiofacies (consisting of limestones rich in Larger Benthic Foraminifera (LBF), algae, and corals) and ten microfacies (based on fossil assemblage and their relative abundance, texture, and fabric) were proposed for this intermediate platform belt in recent literature. The paleoenvironmental reconstruction indicate inner to outer ramps (locally also the upper slope) arranged in two sedimentary sequences rich in LBF and corals. A great development of carbonate seagrass factories in most of the areas in which inner ramps developed has been identified. These factories correspond to a warm-temperate system with warm-water conditions mainly in low latitude settings. Trophic resources proposed in these works suggest oligo- to mesotrophic conditions in inner to mid ramp settings, which only evolve to eutrophic conditions in outer ramp and upper bathyal settings. A comparison of the three belts of carbonate platforms at the western Tethys scale has been performed, providing several important constraints in terms of the recorded time period according to the literature, tectonics, transgressive−regressive trendings, relative abundance of fossils, and paleoenvironmental conditions. The Eocene platforms of the westernmost Tethys show a lacunose geological record registered from upper Ypresian (Cuisian) to Bartonian. It shows an important gap at the upper Ypresian (Cuisian)−Lutetian boundary. LBF remained the primary framework builders elsewhere until the Bartonian age, with zooxanthelle−coral build-ups playing a more significant role in the inner ramps than previously assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.