Abstract
Abstract: The bimodal Piranshahr massif is composed of coeval but geochemically unrelated mafic (40.7 ± 0.2 Ma zircon U–Pb sensitive high-resolution ion microprobe (SHRIMP) age) and A-type felsic rocks (41 ± 0.5 Ma Rb–Sr and 41.3 ± 0.8 Ma zircon U–Pb SHRIMP age). The mafic rocks consist of two geochemical types of gabbros that derived from different magmas. The more abundant gabbros are moderately alkaline, have ratios of large ion lithophile elements to REE and high field strength elements to REE similar to those of intraplate mantle magmas, 87 Sr/ 86 Sr 41 Ma ≈ 0.7036 and ε(Nd) 41 Ma ≈ +7.2. The less abundant gabbros have calc-alkaline affinities, 87 Sr/ 86 Sr 41 Ma ≈ 0.7043 and ε(Nd) 41 Ma ≈ +4.78. Felsic rocks are metaluminous A2-type annite–fayalite–hedenbergite, hypersolvus, leucocratic, coarse-grained agpaitic syenites, pulaskites and granites, with 87 Sr/ 86 Sr 41 Ma ≈ 0.7048 and ε(Nd) 41 Ma ≈ +3.6–4.5. Syenites, pulaskites and granites are genetically related. Pulaskites probably represent alkali-enriched water-rich residual melts from which an F-rich vapour phase was later separated. Granites were probably generated during open-system processes, in which F-rich hydrous alkaline fluids released from the syenites acted upon pre-existing felsic rocks. The c . 41 Ma age of the post-collisional Piranshahr massif indicates that the related collision probably occurred at 50–60 Ma (i.e. Late Palaeocene or Early Eocene), thus resolving a much debated question.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.