Abstract

In plant, the catabolism of lysine has only been studied in some detail in maize. The enzymes lysine 2-oxoglutarate reductase (also known as lysine alpha-ketoglutarate reductase; LOR) and saccharopine dehydrogenase (SDH), which convert lysine into saccharopine, and saccharopine into glutamic acid and 2-aminoadipate 6-semialdehyde, respectively, were isolated from immature rice seeds and partially purified through a three-step purification procedure involving ammonium sulphate precipitation, and anion-exchange and gel-filtration chromatographies, leading to a final yield of 30% for LOR and 24% for SDH. The molecular masses estimated by gel-filtration chromatography on a Sephacryl S200 column and by native non-denaturing PAGE using Ferguson plots were 203 kDa for both enzymes by gel-filtration and 202 kDa for both enzymes by native non-denaturing PAGE. A second band of LOR and SDH activities on native gels was observed for both enzymes with an estimated molecular mass of 396 kDa, which indicated a multimeric structure. Kinetic studies were consistent with an ordered sequence mechanism for LOR, where 2-oxoglutarate is the first substrate and saccharopine is the last product. The results observed for the LOR/SDH activity ratios during purification, the copurification in all three steps, the molecular masses, the relative mobilities on native non-denaturing gels and the pI estimated for LOR and SDH suggest the existence of a bifunctional polypeptide containing LOR and SDH activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call