Abstract

Empty fruit bunches (EFB) of oil palm are the lignocellulosic waste from crude palm oil production. The current practice to deal with the waste is either to burn EFB for energy production or to spread them back on the field as a fertilizer. Both options offer a limited additional value to the industry compared to the use of EFB as a renewable resource for chemicals production. To be used as the raw materials for chemicals production, EFB needs to be hydrolysed first to its sugar-monomer content. This manuscript presents the study of enzymatic hydrolysis of EFB by xylanolytic enzyme. The study covers the evaluation of commercial xylanolytic enzyme in hydrolysing EFB, the effect of temperature, pH, substrate concentration and potential inhibitors in the EFB hydrolysis process, and the influences of thermal pretreatment for enhancing the yield of hydrolysis. The results of this study lead to an increase in the enzymatic hydrolysis process of EFB. The maximum hydrolysis yield was obtained at temperature of 60 ℃ and pH of 5. Both inhibitors, xylose and glucose, affected the hydrolysis process. The results showed that the thermal pretreatment of EFB enhanced the enzymatic hydrolysis yield. Enzymatic hydrolysis was shown to follow Michaelis Menten kinetic model, and the kinetic parameters were obtained to be Km = 22.16 g/L and Vm = 0.17 g/L/min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.