Abstract

SR protein kinases (SRPKs) phosphorylate Ser/Arg dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. Phosphorylation by SRPKs constitutes a major way of regulating such cellular mechanisms. In the past, we have shown that SRPK1a interacts with the nuclear matrix protein scaffold attachment factor B1 (SAFB1) via its unique N-terminal domain, which differentiates it from SRPK1. In this study, we show that SAFB1 inhibits the activity of both SRPK1a and SRPK1 in vitro and that its RE-rich region is redundant for the observed inhibition. We demonstrate that kinase activity inhibition is caused by direct binding of SAFB1 to SRPK1a and SRPK1, and we also present evidence for the in vitro binding of SAFB2 to the two kinases, albeit with different affinity. Moreover, we show that both SR protein kinases can form complexes with both scaffold attachment factors B in living cells and that this interaction is capable of inhibiting their activity, depending on the tenacity of the complex formed. Finally, we present data demonstrating that SRPK/SAFB complexes are present in the nucleus of HeLa cells and that the enzymatic activity of the nuclear matrixlocalized SRPK1 is repressed. These results suggest a new role for SAFB proteins as regulators of SRPK activity and underline the importance of the assembly of transient intranuclear complexes in cellular regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.