Abstract

Periodized nutrition is necessary to optimize training and enhance performance through the season. The Athlete’s Plate (AP) is a nutrition education tool developed to teach athletes how to design their plates depending on training load (e.g., volume × intensity), from easy (E), moderate (M) to hard (H). The AP was validated, confirming its recommendations according to international sports nutrition guidelines. However, the AP had significantly higher protein content than recommended (up to 2.9 ± 0.5 g·kg−1·d−1; p < 0.001 for H male). The aim of this study was to quantify the environmental impact (EnvI) of the AP and to evaluate the influence of meal type, training load, sex and registered dietitian (RD). The nutritional contents of 216 APs created by 12 sport RDs were evaluated using Computrition Software (Hospitality Suite, v. 18.1, Chatsworth, CA, USA). The EnvI of the AP was analyzed by life cycle assessment (LCA) expressed by the total amount of food on the AP, kg, and kcal, according to the Swiss Agricultural Life Cycle Assessment (SALCA) methodology. Higher EnvI is directly associated with higher training load when the total amount of food on the plate is considered for E (5.7 ± 2.9 kg CO2 eq/day); M (6.4 ± 1.5 kg CO2 eq/day); and H (8.0 ± 2.1 kg CO2 eq/day). Global warming potential, exergy and eutrophication are driven by animal protein and mainly beef, while ecotoxicity is influenced by vegetable content on the AP. The EnvI is influenced by the amount of food, training load and sex. This study is the first to report the degree of EnvI in sports nutrition. These results not only raise the need for sustainability education in sports nutrition in general, but also the urgency to modify the AP nutrition education tool to ensure sports nutrition recommendations are met, while not compromising the environment.

Highlights

  • Everything we produce and consume has an impact on the environment

  • The findings show that the environmental impact (EnvI) of the Athlete’s Plate (AP) varies by training load, but this depends on the functional unit (FU)

  • The results of this study show that the EnvI of the AP is influenced by the amount of food on the plates but dependent on the FU

Read more

Summary

Introduction

The environmental impact (EnvI) of food production has been a topic of interest in the scientific community, and a cause for social mobilization. It has been reported that food production and processing have an impact on climate change, generating around 26% of total greenhouse gas emissions (GhGe), using 61% of fresh water and 38% of the global ice-free land surface [1,2]. Food choices have an impact on human health [8,9,10]. Climate change in itself (e.g., wild fires and air pollution) as well as other environmental impacts (e.g., pollutants) can have an impact on human health [13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call