Abstract

As a secondary energy source, hydrogen produced by water electrolysis is a promising way to sustainably use electricity generated from primary renewable resources. Thereby, hydrogen is not only a highly relevant feedstock for producing chemical products, such as fertilizers and platform chemicals, but also a valuable energy carrier that can be readily transported and stored. This study explores how transporting renewable hydrogen via pipeline from regions with high renewable energy potential to large consumer centers can help overcome current challenges in ensuring a climate-friendly renewable energy supply. To this end, this work assesses the environmental impacts of cross-border hydrogen supply chains relative to the attained operating hours of local hydrogen production and the required hydrogen transport distance via pipeline. Environmental hotspots along the hydrogen supply chain and the main parameters affecting the overall environmental impact were identified. Remarkably, an environmental trade-off emerges: the most suitable local conditions for producing renewable hydrogen need to be balanced against the distance of hydrogen transport to consumers. Nonetheless, the relevance of the transport distance decreases with an increasing share of renewable energies in the electricity mix for operating the compressor stations of the pipeline network. Considering the ongoing transition towards renewable power generation technologies, our results indicate that long-distance hydrogen transport via pipeline is environmentally justified provided that the share of renewable energies used to operate the compressor stations increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call