Abstract

We examine sequences containing $p$ "$-t$"s and $pt+r$ "$+1$"s, where $p$, $t$, and $r$ are integers satisfying $p\ge0$, $t\ge 1$ and $pt+r\ge0$. We develop a rotation method to enumerate the number of sequences meeting additional requirements related to their partial sums. We also define downcrossings about $\ell$ and their downcrossing numbers, and obtain formulas for the number of sequences for which the sum of the downcrossing numbers equals $k$, for $\ell \le r+1$. We finish with an investigation of the first downcrossing number about $\ell$, for any $\ell$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.