Abstract
Since Tutte initiated the systematic enumeration of planar maps [11], most of the literature on the subject has dealt with rooted maps (i.e., with maps whose automophism group has been trivialized by distinguishing a doubly-oriented edge). In particular, Tutte proved [11] that the number B′(n) of rooted planar 2-connected (i.e., non-separable) maps with n ≧ 1 edges is expressed by the formulaRecently one of the authors developed a general technique for enumerating unrooted planar maps considered up to orientationpreserving isomorphisms (see [6] and [8]). This technique, which is based on combinatorial map theory, Burnside’s lemma [3, p. 181] and the concept of a quotient map (see Section 1.4), was used to find, with little algebraic manipulation, simple counting formulae for the numbers of non-isomorphic planar maps of several types [7].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.