Abstract

<abstract><p>A nonlinear model, which characterizes motions of shallow water waves and includes the famous Degasperis-Procesi equation, is considered. The essential step is the derivation of the $ L^2(\mathbb{R}) $ uniform bound of solutions for the nonlinear model if its initial value belongs to space $ L^2(\mathbb{R}) $. Utilizing the bounded property leads to several estimates about its solutions. The viscous approximation technique is employed to establish the well-posedness of entropy weak solutions.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.