Abstract

If the universe had been born in a high entropy, equilibrium state, there would be no stars, no planets and no life. Thus, the initial low entropy of the universe is the fundamental reason why we are here. However, we have a poor understanding of why the initial entropy was low and of the relationship between gravity and entropy. We are also struggling with how to meaningfully define the maximum entropy of the universe. This is important because the entropy gap between the maximum entropy of the universe and the actual entropy of the universe is a measure of the free energy left in the universe to drive all processes. I review these entropic issues and the entropy budget of the universe. I argue that the low initial entropy of the universe could be the result of the inflationary origin of matter from unclumpable false vacuum energy. The entropy of massive black holes dominates the entropy budget of the universe. The entropy of a black hole is proportional to the square of its mass. Therefore, determining whether the Maximum Entropy Production Principle (MaxEP) applies to the entropy of the universe is equivalent to determining whether the accretion disks around black holes are maximally efficient at dumping mass onto the central black hole. In an attempt to make this question more precise, I review the magnetic angular momentum transport mechanisms of accretion disks that are responsible for increasing the masses of black holes

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.