Abstract

Each winter in Canada, operational difficulties are encountered at various water works resulting from intake blockages caused by frazil ice entrainment. In a lake setting, frazil is a surface phenomenon, the strong downward current produced by a swirling flow, with an intake vortex present, provides a mechanism by which frazil is transported from the water surface to the submerged intake below. Laboratory experiments were conducted to study the entrainment envelope associated with swirling and non-swirling flows into submerged water intakes. Three-dimensional velocity measurements were made with an acoustic Doppler velocimeter. The results clearly show that the entrainment envelope for swirling flow is several times larger than that for non-swirling flow. This paper details, for a given set of conditions, the differences in the non-swirling and swirling flow entrainment envelopes and emphasizes the potential difficulties with frazil ice that vortices can cause at intakes.Key words: vortex, dye-core vortex, submerged hydraulic intake, entrainment envelope, three-dimensional velocity measurements, acoustic Doppler velocimeter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call