Abstract

The standard gas-phase enthalpies of formation of polychlorinated dibenzofurans (PCDFs) have been predicted by using G3XMP2 model chemistry, density functional theory (DFT), and second-order Muller-Plesset (MP2) theory, coupled with isodesmic reactions. The results show a large difference between G3XMP2 and DFT methods with 6-31G(2df,p) and 6-311++G(3df,3pd) basis sets, while MP2/G3MP2Large calculations agree closely with G3XMP2. Two isodesmic reaction schemes are used for better prediction of formation enthalpies. The first (IR1) employs monochlorobenzene as a reference species and the second (IR2) employs polychlorinated benzenes as reference species. The relative stability of PCDFs is rationalized by positional interactions. While the Cl-substitution at position 1/9 leads to the most stable isomers, the simultaneous substitutions at positions 1 and 9 result in a strong repulsion between Cl atoms. Failure of DFT-B3LYP is due to the overestimation of o-ClCl repulsion. For 1,9-PCDFs, the torsion motions of the benzene rings have extremely low harmonic vibrational frequencies. Their contributions to entropy, heat capacity, and thermal corrections have been calculated by using the numerically evaluated energy levels. The PCDF isomer patterns are also discussed based on the calculated thermodynamic parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call