Abstract

Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.

Highlights

  • The Enteropathogenic Escherichia coli (EPEC) disease process depends on a protein delivery system, encoded by the Locus of Enterocyte Effacement (LEE) Pathogenicity Island, that transfers effector proteins directly into the cytoplasm of infected epithelia [1,2,3]

  • This delivery apparatus is composed of a Type Three Secretion System (T3SS) and a filamentous extension - formed by the EPEC secreted/signalling protein A (EspA) tipped by EspB/EspD to form a pore in the host plasma membrane - generating a conduit for transferring effectors into host cells [1,3]

  • A key pathogenic event relates to the bacteria’s ability to inhibit the expression of antimicrobial and inflammation-inducing molecules regulated by the Nuclear Factor kB (NF-kB) transcription factor

Read more

Summary

Introduction

The EPEC disease process depends on a protein delivery system, encoded by the Locus of Enterocyte Effacement (LEE) Pathogenicity Island, that transfers effector proteins directly into the cytoplasm of infected epithelia [1,2,3]. This delivery apparatus is composed of a Type Three Secretion System (T3SS) and a filamentous extension - formed by the EPEC secreted/signalling protein A (EspA) tipped by EspB/EspD to form a pore in the host plasma membrane - generating a conduit for transferring effectors into host cells [1,3].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.