Abstract

Ground-state entanglement entropies were investigated for the one-dimension quantum two- and three-spin interaction models, the four-state Potts model, and the XXZ model with uniaxial single-ion-type anisotropy, which were obtained on an infinite-size lattice in one spatial dimension. Thus we show that the entanglement, a key concept of quantum information science, is quantified by the ground-state entanglement entropy. The relationships between ground-state entanglement entropy and quantum phase transition was analyzed. These results were obtained using the infinite matrix product state algorithm which works in the thermodynamical limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.