Abstract
The Enriched Xenon Observatory (EXO) is a proposed ton-scale double beta decay experiment with a tentative design sensitivity to the Majorana mass of ∼10 meV. The first phase of EXO is EXO-200, which uses 200 kg of Xe enriched to 80% in 136Xe to search for neutrinoless double beta decay. EXO-200 is a liquid Xe time projection chamber with the ability to detect both scintillation and ionization signals. The detector is constructed from ultra-low background materials and is currently installed at the Waste Isolation Pilot Plant, a salt mine with a 1600 meter water equivalent overburden. The projected 2 year sensitivity for EXO-200 is T1/20ν>6.4×1025 y at 90% confidence level. Looking toward a ton-scale EXO, one unique feature of the experiment is the proposal to identify the barium daughter produced by 136Xe double beta decay on an event-by-event basis. This technique will allow for the elimination of all backgrounds other than the background from the two-neutrino double beta decay spectrum. The EXO Collaboration is exploring a number of options to implement Ba-daughter tagging in the next generation EXO experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.