Abstract

For both the Poisson model problem and the Stokes problem in any dimension, this paper proves that the enriched Crouzeix-Raviart elements are actually identical to the first order Raviart-Thomas elements in the sense that they produce the same discrete stresses. This result improves the previous result in literature which, for two dimensions, states that the piecewise constant projection of the stress by the first order Raviart-Thomas element is equal to that by the Crouzeix-Raviart element. For the eigenvalue problem of Laplace operator, this paper proves that the error of the enriched Crouzeix-Raviart element is equivalent to that of the Raviart-Thomas element up to higher order terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.