Abstract

When it was first isolated from extracts of HeLa cells in Josef Jiricny's laboratory, the thymine DNA glycosylase (TDG) attracted attention because of its ability to remove thymine, i.e. a normal DNA base, from G·T mispairs. This implicated a function of DNA base excision repair in the restoration of G·C base pairs following the deamination of a 5-methylcytosine. TDG turned out to be the founding member of a newly emerging family of mismatch-directed uracil-DNA glycosylases, the MUG proteins, that act on a comparably broad spectrum of base lesion including G·U as the common, most efficiently processed substrate. However, because of its apparent catalytic inefficiency, some have considered TDG a poor DNA repair enzyme without an important biological function. Others have reported 5-meC DNA glycosylase activity to be associated with TDG, thrusting the enzyme into limelight as a possible DNA demethylase. Yet others have found the glycosylase to interact with transcription factors, implicating a function in gene regulation, which appears to be critically important in developmental processes. This article reviews all these developments in view of possible biological functions of this multifaceted DNA glycosylase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.