Abstract

Abstract. Tubular carbonate concretions of up to 1 m in length and perpendicular to bedding, occur abundantly in the Upper Pliensbachian (upper Amaltheus margaritatus Zone, Gibbosus Subzone) in outcrops (Fontaneilles section) in the vicinity of Rivière-sûr-Tarn, southern France. Stable isotope analyses of these concretions show negative δ13C values that decrease from the rim to the center from −18.8‰ to −25.7‰ (V-PDB), but normal marine δ18O values (−1.8‰). Carbon isotope analyses of Late Pliensbachian bulk carbonate (matrix) samples from the Fontaneilles section show clearly decreasing C-isotope values across the A. margaritatus Zone, from +1‰ to −3‰ (V-PDB). Isotope analyses of coeval belemnite rostra do not document such a negative C-isotope trend with values remaining stable around +2‰ (V-PDB). Computer tomographic (CT) scanning of the tubular concretions show multiple canals that are lined or filled entirely with pyrite. Previously, the formation of these concretions with one, two, or more central tubes, has been ascribed to the activity of an enigmatic organism, possibly with annelid or arthropod affinities, known asTisoa siphonalis. Our results suggest tisoan structures are abiogenic. Based on our geochemical analyses and sedimentological observations we suggest that these concretions formed as a combination of the anaerobic oxidation of methane (AOM) and sulfate reduction within the sediment. Fluids rich in methane and/or hydrocarbons likely altered local bulk rock carbon isotope records, but did not affect the global carbon cycle. Interestingly, Tisoa siphonalis has been described from many locations in the Grands Causses Basin in southern France, and from northern France and Luxemburg, always occurring at the same stratigraphic level. Upper Pliensbachian authigenic carbonates thus possibly cover an area of many thousand square kilometers. Greatly reduced sedimentation rates are needed to explain the stabilization of the sulfate-methane transition zone in the sedimentary column in order for the tubular concretions to form. Late Pliensbachian cooling, reducing run-off, and/or the influx of colder water and more vigorous circulation could be responsible for a halt in sedimentation. At the same time (thermogenic) methane may have destabilized during a major phase of Late Pliensbachian sea level fall. As such Tisoa siphonalis is more than a geological curiosity, and its further study could prove pivotal in understanding Early Jurassic paleoenvironmental change.

Highlights

  • We report on large columnar carbonate concretions discovered in outcrops in southern France

  • A striking feature of the Upper Pliensbachian in the Fontaneilles section is the presence of large columnar carbonate concretions, which occur in a 15 m thick interval in the upper part of the Villeneuve Fm, approximately 10 m below the onset of the Schistes cartons Fm

  • We have provided a new interpretation of the enigmatic trace fossil Tisoa siphonalis DE SERRES 1840 and discussed the larger ramifications of our findings

Read more

Summary

Introduction

We report on large columnar carbonate concretions discovered in outcrops in southern France These occur in sediments of Early Jurassic age in the uppermost part of the Pliensbachian stage, just prior to black shales marking the Toarcian Oceanic Anoxic Event. These tubular concretions, known from southern France for at least 170 years, have been attributed to the activity of an enigmatic burrowing organism. In Dumortier’s view, T. siphonalis was made by a burrowing worm-like organism, similar to Arenicolites In his type specimen from SaintFortunat (Department of Gard, France), Dumortier recognized two parallel canals that he assumed to form a U-shaped tube. De Serres (1842), and shortly thereafter Dumortier (1869), concluded that Tisoa had only 2 “true” siphons

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call